Friday, 27 June 2014

Heritability of autism

The heritability of autism is the proportion of autism that can be explained by genetic variation; if the heritability of a condition is high, then the condition is considered to be primarily genetic. Autism has a strong genetic basis, although the genetics of autism is complex and it is unclear whether autism spectrum disorder (ASD) is explained more by multigene interactions or by rare mutations with major effects. Early studies of twins estimated the heritability of autism to be more than 90%; in other words, that 90% of the differences between autistic and non-autistic individuals is due to genetic effects. This may be an overestimate; new twin data and models with structural genetic variation are needed. When only one identical twin is autistic, the other often has learning or social disabilities. For adult siblings, the risk of having one or more features of the broader autism phenotype might be as high as 30%, much higher than the risk in controls.

Genetic linkage analysis has been inconclusive; many association analyses have had inadequate power. For each autistic individual, mutations in more than one gene may be implicated. Mutations in different sets of genes may be involved in different autistic individuals. There may be significant interactions among mutations in several genes, or between the environment and mutated genes. By identifying genetic markers inherited with autism in family studies, numerous candidate genes have been located, most of which encode proteins involved in neural development and function.[7][8] However, for most of the candidate genes, the actual mutations that increase the risk for autism have not been identified. Typically, autism cannot be traced to a Mendelian (single-gene) mutation or to single chromosome abnormalities such as fragile X syndrome or 22q13 deletion syndrome.[9][10]
Deletion (1), duplication (2) and inversion (3) are all chromosome abnormalities that have been implicated in autism.[11]
The large number of autistic individuals with unaffected family members may result from copy number variations (CNVs)—spontaneous alterations in the genetic material during meiosis that delete or duplicate genetic material.[12][13] Sporadic (non-inherited) cases have been examined to identify candidate genetic loci involved in autism. Using array comparative genomic hybridization (array CGH), a technique for detecting CNVs, one study found them in 10% of families with one affected child.[14] Some of the altered loci had been identified in previous studies of inherited autism; many were unique to the sporadic cases examined in this study. Hence, a substantial fraction of autism may be highly heritable but not inherited: that is, the mutation that causes the autism is not present in the parental genome.[11]
Although the fraction of autism traceable to a genetic cause may grow to 30–40% as the resolution of array CGH improves,[11] several results in this area have been described incautiously, possibly misleading the public into thinking that a large proportion of autism is caused by CNVs and is detectable via array CGH, or that detecting CNVs is tantamount to a genetic diagnosis.[15] The Autism Genome Project database contains genetic linkage and CNV data that connect autism to genetic loci and suggest that every human chromosomemay be involved.[16] It may be that using autism-related subphenotypes instead of the diagnosis of autism per se may be more useful in identifying susceptible loci.

Twin studies[edit]

Twin studies are a helpful tool in determining the heritability of disorders and human traits in general. They involve determining concordance of characteristics between identical (monozygotic or MZ) twins and between fraternal (dizygotic or DZ) twins. Possible problems of twin studies are: (1) errors in diagnosis of monozygocity, and (2) the assumption that social environment sharing by DZ twins is equivalent to that of MZ twins.

A condition that is environmentally caused without genetic involvement would yield a concordance for MZ twins equal to the concordance found for DZ twins. In contrast, a condition that is completely genetic in origin would theoretically yield a concordance of 100% for MZ pairs and usually much less for DZ pairs depending on factors such as the number of genes involved and assortative mating.
An example of a condition that appears to have very little if any genetic influence is irritable bowel syndrome (IBS), with a concordance of 28% vs. 27% for MZ and DZ pairs respectively.[18] An example of a human characteristics that is extremely heritable is eye color, with a concordance of 98% for MZ pairs and 7–49% for DZ pairs depending on age.[19]
Identical twin studies put autism's heritability in a range between 36% and 95.7%, with concordance for a broader phenotype usually found at the higher end of the range.[20]Autism concordance in siblings and fraternal twins is anywhere between 0 and 23.5%. This is more likely 2–4% for classic autism and 10–20% for a broader spectrum. Assuming a general-population prevalence of 0.1%, the risk of classic autism in siblings is 20- to 40-fold that of the general population.
Notable twin studies have attempted to shed light on the heritability of autism.
A small scale study in 1977 was the first of its kind to look into the heritability of autism. It involved 10 DZ and 11 MZ pairs in which at least one twin in each pair showed infantile autism. It found a concordance of 36% in MZ twins compared to 0% for DZ twins. Concordance of "cognitive abnormalities" was 82% in MZ pairs and 10% for DZ pairs. In 12 of the 17 pairs discordant for autism, a biological hazard was believed to be associated with the condition.[21]
A 1979 case report discussed a pair of identical twins concordant for autism. The twins developed similarly until the age of 4, when one of them spontaneously improved. The other twin, who had suffered infrequent seizures, remained autistic. The report noted that genetic factors were not "all important" in the development of the twins.[22]
In 1985, a study of twins enrolled with the UCLA Registry for Genetic Studies found a concordance of 95.7% for autism in 23 pairs of MZ twins, and 23.5% for 17 DZ twins.[23]
In a 1989 study, Nordic countries were screened for cases of autism. Eleven pairs of MZ twins and 10 of DZ twins were examined. Concordance of autism was found to be 91% in MZ and 0% in DZ pairs. The concordances for "cognitive disorder" were 91% and 30% respectively. In most of the pairs discordant for autism, the autistic twin had more perinatal stress.[24]
A British twin sample was reexamined in 1995 and a 60% concordance was found for autism in MZ twins vs. 0% concordance for DZ. It also found 92% concordance for a broader spectrum in MZ vs. 10% for DZ. The study concluded that "obstetric hazards usually appear to be consequences of genetically influenced abnormal development, rather than independent aetiological factors."[25]
A 1999 study looked at social cognitive skills in general-population children and adolescents. It found "poorer social cognition in males", and a heritability of 0.68 with higher genetic influence in younger twins.
                                                                                           TWINS IN UTERO

In 2000, a study looked at reciprocal social behavior in general-population identical twins. It found a concordance of 73% for MZ, i.e. "highly heritable", and 37% for DZ pairs.[27]
A 2004 study looked at 16 MZ twins and found a concordance of 43.75% for "strictly defined autism". Neuroanatomical differences (discordant cerebellar white and grey matter volumes) between discordant twins were found. The abstract notes that in previous studies 75% of the non-autistic twins displayed the broader phenotype.

Another 2004 study examined whether the characteristic symptoms of autism (impaired social interaction, communication deficits, and repetitive behaviors) show decreased variance of symptoms among monozygotic twins compared to siblings in a sample of 16 families. The study demonstrated significant aggregation of symptoms in twins. It also concluded that "the levels of clinical features seen in autism may be a result of mainly independent genetic traits."[29]
An English twin study in 2006 found high heritability for autistic traits in a large group of 3,400 pairs of twins.[30]
One critic of the pre-2006 twin studies said that they were too small and their results can be plausibly explained on non-genetic grounds.[31]

Sibling studies[edit]

A study of 99 autistic probands which found a 2.9% concordance for autism in siblings, and between 12.4% and 20.4% concordance for a "lesser variant" of autism.[6]
A study of 31 siblings of autistic children, 32 siblings of children with developmental delay, and 32 controls. It found that the siblings of autistic children, as a group, "showed superior spatial and verbal span, but a greater than expected number performed poorly on the set-shifting, planning, and verbal fluency tasks."

A 2005 Danish study looked at "data from the Danish Psychiatric Central Register and the Danish Civil Registration System to study some risk factors of autism, including place of birth, parental place of birth, parental age, family history of psychiatric disorders, and paternal identity." It found an overall prevalence rate of roughly 0.08%. Prevalence of autism in siblings of autistic children was found to be 1.76%. Prevalence of autism among siblings of children with Asperger syndrome or PDD was found to be 1.04%. The risk was twice as high if the mother had been diagnosed with a psychiatric disorder. The study also found that "the risk of autism was associated with increasing degree of urbanisation of the child's place of birth and with increasing paternal, but not maternal, age."[33]
A study in 2007 looked at a database containing pedigrees of 86 families with two or more autistic children and found that 42 of the third-born male children showed autistic symptoms, suggesting that parents had a 50% chance of passing on a mutation to their offspring. The mathematical models suggest that about 50% of autistic cases are caused by spontaneous mutations. The simplest model was to divide parents into two risk classes depending on whether the parent carries a pre-existing mutation that causes autism; it suggested that about a quarter of autistic children have inherited a copy number variation from their parents.

New research from Aarhus university in Denmark suggests that children with older siblings on the autism spectrum have a seven-fold increased risk of developing the disorder. The study found that siblings with the same parents are most at risk, followed by siblings with the same mother. Meanwhile, paternal half siblings did not demonstrate a significant increased risk.

These new findings confirm the suggested link between genetics and autism, while the maternal connection points toward potential risk factors associated with pregnancy. Since recent studies also recommend that early treatment of autism can have beneficial affects, this new study sheds light on a potential need to do early screening for symptoms amongst younger siblings. It also suggests that mothers can take extra precautions while pregnant.
These findings offer valuable insight on the link between genetics, pregnancy and autism, and provide further impetus for researchers to develop tests that detect genetic risk factors leading to autism.

Other family studies[edit]

A 1994 study looked at the personalities of parents of autistic children, using parents of children with Down's syndrome as controls. Using standardized tests it was found that parents of autistic children were "more aloof, untactful and unresponsive" compared to parents whose children did not have autism.[35]
A 1997 study found higher rates of social and communication deficits and stereotyped behaviors in families with multiple-incidence autism.[36]
Autism was found to occur more often in families of physicists, engineers and scientists. 12.5% of the fathers and 21.2% of the grandfathers (both paternal and maternal) of children with autism were engineers, compared to 5% of the fathers and 2.5% of the grandfathers of children with other syndromes.[37] Other studies have yielded similar results.[38][39] Findings of this nature have led to the coinage of the term "geek syndrome".
                                              BREAKING IN THE AUTISTIC BRAIN

A 2001 study of brothers and parents of autistic boys looked into the phenotype in terms of one current cognitive theory of autism. The study raised the possibility that the broader autism phenotype may include a "cognitive style" (weak central coherence) that can confer information-processing advantages.[41]
A study in 2005 showed a positive correlation between repetitive behaviors in autistic individuals and obsessive-compulsive behaviors in parents.[42] Another 2005 study focused on sub-threshold autistic traits in the general population. It found that correlation for social impairment or competence between parents and their children and between spouses is about 0.4.[43]
A 2005 report examined the family psychiatric history of 58 subjects with Asperger syndrome (AS) diagnosed according to DSM-IV criteria. Three (5%) had first-degree relatives with AS. Nine (19%) had a family history of schizophrenia. Thirty five (60%) had a family history of depression. Out of 64 siblings, 4 (6.25%) were diagnosed with AS.

3 comments:

  1. That is very interesting I love reading and I am always searching for informative information like this. I am very happy to your post about on. Great information, I would like to say your post is very informative.
    is mental health genetic

    ReplyDelete
  2. What a great blog. Its inspirational and mouthwatering all at the same time.
    Insurance Carriers

    ReplyDelete
  3. Thanks for sharing this great article. Great information thanks a lot for the detailed article. That is very interesting I love reading and I am always searching for informative information like this.
    is autism genetic

    ReplyDelete